Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
NPJ Parkinsons Dis ; 8(1): 76, 2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1900490

ABSTRACT

The role of autoimmunity in neurodegeneration has been increasingly suggested. The renin-angiotensin system (RAS) autoantibodies play a major role in several peripheral inflammatory processes. Dysregulation of brain RAS has been involved in neuroinflammation and neurodegeneration. We aimed to know whether angiotensin type-1 receptor (AT1) autoantibodies (AT1 agonists) and angiotensin-converting enzyme 2 (ACE2) autoantibodies (ACE2 antagonists) may be involved in Parkinson's disease (PD) progression and constitute a new therapeutical target. Both AT1 and ACE2 serum autoantibodies were higher in a group of 117 PD patients than in a group of 106 controls. Serum AT1 autoantibodies correlated with several cytokines, particularly Tumor Necrosis Factor Ligand Superfamily Member 14 (TNFSF14, LIGHT), and 27-hydroxycholesterol levels. Serum ACE2 autoantibodies correlated with AT1 autoantibodies. Both autoantibodies were found in cerebrospinal fluid (CSF) of four PD patients with CSF samples. Consistent with the observations in patients, experimental dopaminergic degeneration, induced by 6-hydroxydopamine, increased levels of autoantibodies in serum and CSF in rats, as well as LIGHT levels and transglutaminase activity in rat substantia nigra. In cultures, administration of AT1 autoantibodies enhanced dopaminergic neuron degeneration and increased levels of neuroinflammation markers, which was inhibited by the AT1 antagonist candesartan. The results suggest dysregulation of RAS autoantibodies as a new mechanism that can contribute to PD progression. Therapeutical strategies blocking the production, or the effects of these autoantibodies may be useful for PD treatment, and the results further support repurposing AT1 blockers (ARBs) as treatment against PD progression.

2.
Front Med (Lausanne) ; 9: 840662, 2022.
Article in English | MEDLINE | ID: covidwho-1771044

ABSTRACT

Objective: We previously showed that angiotensin type-1 receptor and ACE2 autoantibodies (AT1-AA, ACE2-AA) are associated with COVID-19 severity. Our aim is to find correlations of these autoantibodies with routine biochemical parameters that allow an initial classification of patients. Methods: In an initial cohort of 119 COVID-19 patients, serum AT1-AA and ACE2-AA concentrations were obtained within 24 h after diagnosis. In 50 patients with a complete set of routine biochemical parameters, clinical data and disease outcome information, a Random Forest algorithm was used to select prognostic indicators, and the Spearman coefficient was used to analyze correlations with AT1-AA, ACE2-AA. Results: Hemoglobin, lactate dehydrogenase and procalcitonin were selected. A decrease in one unit of hemoglobin, an increase in 0.25 units of procalcitonin, or an increase in 100 units of lactate dehydrogenase increased the severity of the disease by 35.27, 69.25, and 3.2%, respectively. Our binary logistic regression model had a predictive capability to differentiate between mild and moderate/severe disease of 84%, and between mild/moderate and severe disease of 76%. Furthermore, the selected parameters showed strong correlations with AT1-AA or ACE2-AA, particularly in men. Conclusion: Hemoglobin, lactate dehydrogenase and procalcitonin can be used for initial classification of COVID-19 patients in the admission day. Subsequent determination of more complex or late arrival biomarkers may provide further data on severity, mechanisms, and therapeutic options.

3.
Biomedicines ; 10(2)2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1704583

ABSTRACT

A massive worldwide vaccination campaign constitutes the main tool against the COVID-19 pandemic. However, drug treatments are also necessary. Antivirals are the most frequently considered treatments. However, strategies targeting mechanisms involved in disease aggravation may also be effective. A major role of the tissue renin-angiotensin system (RAS) in the pathophysiology and severity of COVID-19 has been suggested. The main link between RAS and COVID-19 is angiotensin-converting enzyme 2 (ACE2), a central RAS component and the primary binding site for SARS-CoV-2 that facilitates the virus entry into host cells. An initial suggestion that the susceptibility to infection and disease severity may be enhanced by angiotensin type-1 receptor blockers (ARBs) and ACE inhibitors (ACEIs) because they increase ACE2 levels, led to the consideration of discontinuing treatments in thousands of patients. More recent experimental and clinical data indicate that ACEIs and, particularly, ARBs can be beneficial for COVID-19 outcome, both by reducing inflammatory responses and by triggering mechanisms (such as ADAM17 inhibition) counteracting viral entry. Strategies directly activating RAS anti-inflammatory components such as soluble ACE2, Angiotensin 1-7 analogues, and Mas or AT2 receptor agonists may also be beneficial. However, while ACEIs and ARBs are cheap and widely used, the second type of strategies are currently under study.

4.
J Autoimmun ; 122: 102683, 2021 08.
Article in English | MEDLINE | ID: covidwho-1267726

ABSTRACT

The renin-angiotensin system (RAS) plays a major role in COVID-19. Severity of several inflammation-related diseases has been associated with autoantibodies against RAS, particularly agonistic autoantibodies for angiotensin type-1 receptors (AA-AT1) and autoantibodies against ACE2 (AA-ACE2). Disease severity of COVID-19 patients was defined as mild, moderate or severe following the WHO Clinical Progression Scale and determined at medical discharge. Serum AA-AT1 and AA-ACE2 were measured in COVID-19 patients (n = 119) and non-infected controls (n = 23) using specific solid-phase, sandwich enzyme-linked immunosorbent assays. Serum LIGHT (TNFSF14; tumor necrosis factor ligand superfamily member 14) levels were measured with the corresponding assay kit. At diagnosis, AA-AT1 and AA-ACE2 levels were significantly higher in the COVID-19 group relative to controls, and we observed significant association between disease outcome and serum AA-AT1 and AA-ACE2 levels. Mild disease patients had significantly lower levels of AA-AT1 (p < 0.01) and AA-ACE2 (p < 0.001) than moderate and severe patients. No significant differences were detected between males and females. The increase in autoantibodies was not related to comorbidities potentially affecting COVID-19 severity. There was significant positive correlation between serum levels of AA-AT1 and LIGHT (TNFSF14; rPearson = 0.70, p < 0.001). Both AA-AT1 (by agonistic stimulation of AT1 receptors) and AA-ACE2 (by reducing conversion of Angiotensin II into Angiotensin 1-7) may lead to increase in AT1 receptor activity, enhance proinflammatory responses and severity of COVID-19 outcome. Patients with high levels of autoantibodies require more cautious control after diagnosis. Additionally, the results encourage further studies on the possible protective treatment with AT1 receptor blockers in COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Autoantibodies/blood , Autoantigens/immunology , COVID-19/immunology , Receptor, Angiotensin, Type 1/immunology , Aged , Autoantibodies/immunology , COVID-19/blood , Female , Humans , Male , Middle Aged , Renin-Angiotensin System/immunology , SARS-CoV-2
6.
Clin Sci (Lond) ; 135(3): 465-481, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-1043627

ABSTRACT

The key link between renin-angiotensin system (RAS) and COVID-19 is ACE2 (angiotensin-converting enzyme 2), which acts as a double-edged sword, because ACE2 increases the tissue anti-inflammatory response but it is also the entry receptor for the virus. There is an important controversy on several drugs that regulate RAS activity and possibly ACE2, and are widely used, particularly by patients most vulnerable to severe COVID-19. In the lung of healthy rats, we observed that candesartan (an angiotensin type-1, AT1, receptor blocker; ARB) and captopril (an ACE inhibitor; ACEI) up-regulated expression of tissue ACE2 and RAS anti-inflammatory axis receptors (AT2 and Mas receptors). This effect was particularly pronounced in rats with metabolic syndrome (obesity, increased blood pressure and hyperglycemia) and aged rats. Treatment of cultures of human type-II pneumocytes with candesartan or captopril induced up-regulation of ACE2 expression in cells. Treatment with viral spike protein induced a decrease in full-length (i.e. transmembrane) ACE2, an increase in levels of a short intracellular ACE2 polypeptide and an increase in ADAM17 activity in cells, together with an increase in levels of soluble ACE2 and major proinflammatory cytokines in the culture medium. Spike protein-induced changes and levels of spike protein internalization in cells were inhibited by pretreatment with the above-mentioned drugs. The results suggest that these drugs increase ACE2 levels and promote the anti-inflammatory RAS axis in the lung. Furthermore, possible up-regulation of viral entry by the drug-induced increase in expression of transmembrane ACE2 is counteracted by additional mechanisms, particularly by drug-induced inhibition of ADAM17 activity.


Subject(s)
Benzimidazoles/administration & dosage , Biphenyl Compounds/administration & dosage , COVID-19 Drug Treatment , Captopril/administration & dosage , Tetrazoles/administration & dosage , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Female , Humans , Lung/metabolism , Lung/virology , Male , Rats , Renin-Angiotensin System/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL